Arginine transcriptional response does not require inositol phosphate synthesis.
نویسندگان
چکیده
Inositol phosphates are key signaling molecules affecting a large variety of cellular processes. Inositol-polyphosphate multikinase (IPMK) is a central component of the inositol phosphate biosynthetic routes, playing essential roles during development. IPMK phosphorylates inositol 1,4,5-trisphosphate to inositol tetrakisphosphate and subsequently to inositol pentakisphosphate and has also been described to function as a lipid kinase. Recently, a catalytically inactive mammalian IPMK was reported to be involved in nutrient signaling by way of mammalian target of rapamycin and AMP-activated protein kinase. In yeast, the IPMK homologue, Arg82, is the sole inositol-trisphosphate kinase. Arg82 has been extensively studied as part of the transcriptional complex regulating nitrogen sensing, in particular arginine metabolism. Whether this role requires Arg82 catalytic activity has long been a matter of contention. In this study, we developed a novel method for the real time study of promoter strength in vivo and used it to demonstrate that catalytically inactive Arg82 fully restored the arginine-dependent transcriptional response. We also showed that expression in yeast of catalytically active, but structurally very different, mammalian or plant IPMK homologue failed to restore arginine regulation. Our work indicates that inositol phosphates do not regulate arginine-dependent gene expression.
منابع مشابه
A lysine accumulation phenotype of ScIpk2Delta mutant yeast is rescued by Solanum tuberosum inositol phosphate multikinase.
Inositol phosphates and the enzymes that interconvert them are key regulators of diverse cellular processes including the transcriptional machinery of arginine synthesis [York (2006) Biochim. Biophys. Acta 1761, 552-559]. Despite considerable interest and debate surrounding the role of Saccharomyces cerevisiae inositol polyphosphate kinase (ScIPK2, ARG82, ARGRIII) and its inositol polyphosphate...
متن کاملRoles of URE2 and GLN3 in the proline utilization pathway in Saccharomyces cerevisiae.
The yeast Saccharomyces cerevisiae can use alternative nitrogen sources such as arginine, urea, allantoin, gamma-aminobutyrate, or proline when preferred nitrogen sources like glutamine, asparagine, or ammonium ions are unavailable in the environment. Utilization of alternative nitrogen sources requires the relief of nitrogen repression and induction of specific permeases and enzymes. The produ...
متن کاملRole of the unfolded protein response pathway in regulation of INO1 and in the sec14 bypass mechanism in Saccharomyces cerevisiae.
INO1, encoding inositol 1-phosphate synthase, is the most highly regulated of a class of genes containing the repeated element, UAS(INO), in their promoters. Transcription of UAS(INO)-containing genes is modulated by the availability of exogenous inositol and by signals generated by alteration of phospholipid metabolism. The unfolded protein response (UPR) pathway also is involved in INO1 expre...
متن کاملVerifying of Participation of Nitric Oxide in Morphine Place Conditioning in the Rat Medial Septum Using Nicotinamide Adenine Dinucleotide Phosphate-Diaphorase (NADPH-d)
Background: Role of nitric oxide (NO) in morphine-induced conditioned place preference (CPP) has already been proposed in the rat medial septum (MS), but no molecular evidence has been provided to clear this fact. Methods: Effects of intraseptal injections of L-arginine and/or NG-nitro-L-arginine methyl ester (L-NAME) on morphine place conditioning in Wistar rats were examined. Morphine (2.5-7....
متن کاملInositol phosphate metabolism and nitric-oxide synthase activity in endothelial cells are involved in the vasorelaxant activity of nebivolol.
Nebivolol is a recently developed beta-blocker provided with vasodilator properties. Because the mechanism of the putative endothelium-dependent effect of this beta-adrenoceptor blocker has not been completely elucidated, the aim of this study was to investigate the effects of nebivolol on an isolated resistance vascular bed and on cell messengers and constitutive nitric-oxide synthase activity...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 287 45 شماره
صفحات -
تاریخ انتشار 2012